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'FOREWORD
This Interim Technical Report No. 2 was prepared for presentation

at the Conference on the Prospects of Advanced Fracture Mechanics which
is to be held in Delft, Netherland, June 24 - 28, 1974, under the joint
sponsorship of the Metal Research Institute T. N. 0. and Delft Univer-
sity of Technology in close cooperation with Lehigh University.

The figures in this report were reduced in compliance with the
format specified by the Seminar organizers,

Full-size, 8 1/2" x 11", figures can be obtained for numerical
computation by writing to the undersigned:

Professor Albert S. Kobayashi
Department of Mechanical Engineering
University of Washington
Seattle, Washington 98195

THE FINDINGS OF THIS REPORT ARE NOT TO BE

CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE

ARMY POSITION, UNLESS SO DESIGNATED BY OTHER

AUTHORIZED DOCUMENTS.
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STRESS INTENSITY FACTORS FOR ELLIPTICAL CRACKS

A.S. Kobayashi, A.N. Enetanya, and R.C. Shah

University of Washington, Seattle, Washington 98195 and
The Boeing Aerospace Company, Seattle, Washington 98124

ABSTRACT

The combined use of a solution for an elliptical crack sub-
jected to internal preasure, which is represented by a polynomial
expression, together with a free surface solution for the alter-
nating-method is-reviewed-and-methods--for-improving--th-offi-cienc,,
of this numerical technique are proposed. Numerical differentia-
tion for avoiding the derivation and computer programming of com-
plex mathematical expressions is discussed. A criterion for max-
imum grid size for the free surface solution is proposed. Also
optimum fittings of the firnt, second and third order polynomial
distributions of internal pressure are considered.

INTRODUCTION

Post mortem failure analysis of fractured structural compo-
nents requires modeling of an embedded or surface flaw from which
fracture initiated. More often, these flaws can be approximated
by an ellipse and are located in regions of stress concentrations
or thin cross-section, such as those shown in Fig. i, where the
stress gradient as well as the complex geometry of the structure
cannot be ignored. The elliptical crack and its interaction with
its adjacent or intersecting boundaries have thus been studied by
various investigators during the past ten years.

The earliest paper on stress intensity factor of an ellipti-
cal crack is that by Irwin who then derived the approximate ex-
pression for the stress intensity factor at the point of deepest
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(0) EMBCDOED ELLIPICAL WELD (b) QUARTER. ELLIPTICAL FLAW
DEFECT IN A FLANGE - WES AT A HOLE
CONNEC TION

(c) DEEP PART- ELLIPTICAL (d) EMBEDDED ELLIP] ICAL FLAW
SURFACE FLAW IN A THIN-WALLED PRESSURE

VESSEL

FIGURE I TYPICAL ELLIPTICAL FLAWS IN STRUCTURAL COMPONENTS

penetration of a shallow* semi-elliptical crack in a tension plate.
Among the several solutions on the "surface flaw problem" as well
as embedded flaws which have been published to date, the mathemat-
ically more rigorous solutions are all based 9n the alternating
technique suggested by Kantorovich and KryloN . This procedure

. -was-.first. applied to- crack__problens_.bySmith who determined the
stress intensity factors of a semi-circular crack in a thickea .............
in tension, bending, and subjected to rapid heating or cooling.
This method of approach was then used by Smith and his coworkers to
analyze a fami yboa problems involving circular 5laws and part-
circular flaws ' ' . Recentl Uartranft and Sih reexamined one
of Smith's original solutions ' with an added singularity func-
tion which increased the accuracy of their solution.

The disadvantage of using the circular crack solution is its
geometry which cannot be used to model oblong elliptical or semi-
cracks such as those shown in Figs. la and ld*. For better mod-
eling of elliptical1 Slaws, Shah and Kobayushi used the potential
function of Segedin to derive a polynomial representation of the
internal pressure on an elliptical crack. This solution was then
used in the alternating method to determine the otress intensij
factors of embedded elliptical flaws under nonuniform loadings

Shallow crack means that the crack depth is less than half
of the plate thickness.

*'Part elliptical cracks, such as those shown in Figs. lb and

1c, can be approximated by part circular crack as shown in
Ref. 8. Part elliptical crack with large aspect ratio, i.e.,
b/a < 0.2, cannot be conveniently approximated by a part
circular crack.

I
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as ,iltas to-estimate ftYr-stress -intensity f actors fcr semi- .

elliptigl surfa.e flaws . Prior to the above development, .Kassir
and Sih determined the stress incensity factor of an elliptical
crack under linea y varying internal pressure and u form shear
tractions. Smith extended Kassir and Sih solution following
the procedure Aescribed in Ref. 9 to derive a polynomial distribu-

£ tion of shear tflctions prescribed on an elliptical crack. In
addition, SmiLh 1.as recently used this procedure to determine the
stress intensity factor of a surface flaw in a thin tension plate.

The solution procedure involving an elliptical crack is con-
venient for modeling qctual flaw geometries. The small number of
derivable terms in the polynomial representation of the internal
preosure, however, limits Lhe accuracy in which a complex residual
pressure distribution on the crack surface can be fitted. Unfor-
tunately numerical convergence of the alternating method is senwi-
tive to this fitting and thus the accuracy of the entire solution
procedures hinges on the accuracy of fitting. In particularly, nu-
merical difficulties in fitting residual stress are encountered in
surface flaw problems where a portion of the ellipse protrudes
through the free surface.

The purpose of this paper is to discuss numerical problems
associated with the fitting process and to suggest procedures which
reduce some of the immense amount of theoretical derivations and
computer programminS associated with this numevical analysis.- -

THEORETICAL BACKGROUND

Two solutions are needed in applying the alternating method to
fracture mechanics problems involving elliptical cracks. One solu-
tion involves a semi-infinite solid and the other solution involves
an elliptical crack both subjected to variable surface tractions.
For ejjigical crack problems involving flat surfaces, Love's solu-
tion ' is used for the free-surface solution of the former.
Nuje~igajlpj cedures related to Love's solution are well document-
ed ' ' and will not be repeated here. A discussion, however,
on the tolerable maximum size of a rectangle for erasing the resid-
ual surface traction on the flat surface will be presented later.

In the following, a brief review of the basic9equations for an
elliptical crack with prescribed internal pressure , which can be
repri6ented by a polynomial in terms of Segedin's potential func-
tion , is presented.

Consider an elastic solid containing an elliptical crack, as
shown in Fig. 2, which is located in the plane z-O, and is opened
by applying an internal pressure, p(x,y), symmetrically to both sur-
faces of the crack. The boundary cond 4.irns for this problem are:

.- , . ,. . . . . . . . . . ,. . ., . .. , = . . . . . .= . -t. . . . . . .. .. , - . = = ". . ., : : r - : ' " .' , u . . : : :
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T - 2G z ax 2 (3d)

T " 2G z (3e)yz ayaz2

where G is the shear modulus.

Due to practical limitations in deriving additional terms in

the polynomial representation of the pressure distribution, p(x,y),
only terms up through the third powers in x and y were derived as,

3
p(x,y) - Z A i x y (4)

i~ji0

The harmonic function which satisfies the necessary boundary condi-
tions was derived from Segedin's potential function. Details of
the harmonic function and its derivatives are described in Refs. 9
and 14.

Finally, the stress intensity factor associgted with can be
obta ned through a procedure described by Irwin or Kassir and
Sib . Again details of this procedure are described in Refs. 9
and 14.

Finite Difference Calculation of Stresses

As mentioned earlier, the derivable terms in the Eq. 4 were
limited to a third order polynomial in x and y due to practical
considerations. Some of this difficulty can be removed if the par-
tial derivatives in Eq. 3 can be replaced by numerical differenti-
ations. Analytical expressions of a2c/@x 2 etc., which are given in
the Appendix of Ref. 9,were used to obtain the third partial
derivatives of with respect to x, y and z. Analytical expres-
sions of 32o/ax 2 etc. were evaluated numerically at two locations
of x and x + 0.001a etc. to compute 3 /ax3 etc. These numerical
derivatives were then combined as per Eq. 3 to determine the
stresses of cVY, T and T at various values of x and z on vari-
ious y - constant fanes. These numerical results were found to
agree within three qignificant figures with corresponding stresses
obtained previously" ' .

The above numerical differentiation procedure has been extend-
ed to compute the same third partial derivatives from analytical
expressions of DO/ax etc. Preliminary results show that the same
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ex-ellent agreement between stresses, which were computed numeri-
cally and -by-theclosed form procedure, exists except for regions
of high stress gradients where the elliptical crack front inter-
sects with the y - const, plane, e.g. y-0 plane, in Fig. 2. Effortis currently underway to determine whether the average surface

traction acting on the small region surrounding such stress singu-

larity can exhibit numerically the same effect as the residua
singular surface traction as far as the free surface solution is
concerned. If such replacement is possible, then the average
stresses determined by the second numerical differentiations of
D03x, etc. can also be used to compute the residual surface trac-
tions on the bounding free surfaces.

Maximum Permissible Rectangle Size

The second step of the alternating technique is to eliminate
the residual surface traction on the bounding free surfaces. A
common procedure is to use Love's solution for a half space
with prescribed uniform surface tractions on a rectangle in the
bounding plane. When the alternating technique was first used to
analyze surface flaw problems several year5 ago, the total number
of such rectangles was of the order of 540 . Through numerical
experimentation, gmith has graduaj3y reduced the numbers of these
rectangles to 180 and then to 71 . Hartranft and Sih, on the
other hand, increased the number of rectangles to 1744 which to-
gether with the increased number of Fourier series used, resulted
in computing time of 8 hours to solve one problem. The purpose of
this section is to determine the maximum permissible rectangle size
which will yield reasonably accurate results of this second step of
of the alternating procedure.

Since the continuously varying residual surface Lractions on
the bounding plane are to be replaced by uniform surface tractions
over each of the rectangles forming the bounding plane, the prob-
lem reduces to the difference in the resultant stresses due to
prescribed uniform or variable surface tractions on the rectangle.
This difference in resultant stresses can be estimated by examining
the stresses in a half space due to (1) a linearly varying stress
distribution over the rectangle on the bounding plane, and (2) a
uniform stress distribution over the rectangle. The uniform stress
distribution is in equilibrium with the linearly varying stress
distribution as shown in Fig. 3. The stress distributions at any
point in a semi-infinite plate due to a linearly varying or a uni-
form surface traction, ay, over a segment 2d as shoy in the
legend of Fig. 3 are given by the following equations .

fo Y2+( - d )2  2y~z-d). + +d -an- 2dy
G - y- in Y+ ta.+22d

zz d y2+(z+d) 2  y2+(z-d) 2  d y2 +z 2 -d 2

(5a)
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FIGURE 3. STRESS DISTRIBUTION AT z - d IN A HALF PLANE DUE
70 UNIFORM AND LINEARLY VARYING PRESSURES ACT;NG
ON THE BOUNDING LINE.

T fo {0 2y tan-i 2dy .}(5b)

zy y 2+(z-d) 2  d y+ -d

For a uniform surface traction prescribed over a segment of 2d,
these stresses become

21

r0 - 2dy (.y2+z2 -d2 )
- y +z2 -d 2  Zy2+(z+d) 2 ] [y2+(z-d) 21

T fo0 4dyz (6b)
zy Tr [y2+(z+d) 2][y2+(z-d)2 ]

Figure 3 shows the distributions of ozz and Tzy at distances
of z - d from the center of the load segment for liaearly varying
and uniform normal tractions acting on the segment. Although the

stresses due to the two loads differ by a factor of 2 at y 0 in

I. . ... .. . .. ..... ... ...... r,.,,,=.-_ e . , , = ..e
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Ftg. 3, this difference when superimposed on to other stresses due to
the common tuiform load acting on the rectangle, reduces the over-
all differences to less than 5% in actual computations. Further
evaluations of Eqs. 5 and 6, for most parts of the elliptical
cr; k, show that the differences in both normal and shear stresses
on thcr crack plane due to the above two surface tractions rapidly
diminish at a distanc which is half-wid.h away from the load
segment..

The above results indicate that the size of the rectangle can
be equal to its closest distance to the crack plane or to the other
bounding surfaces for the case of a finite thickness solid, which-
ever is smaller. Similar criterion was found to hold for +angen-
tial surface traction acting on che bounding free.surface. The
number of ne':essary rectangles can be reduced systematically fol-
lowin this criterion thus resulting in substantial reduction in
compibting tine.

Residual Pressure Distribution on Semi-Elliptical Crack

Another recognized drawback of the alternating technique based

on the elliptical crack pottntial function is in its inability to
approximate the residual pressure distribution on the crack surface
w... th .t. he limited .third order pQlynomial. This..drawback Is. for all
practical purposes nonexistent for totally embedded elliptical
flaw, cuch as those shown in Figs. la and id, since the residual
pressure distribution varies smoothly, A third degree polynomial
can be fitted within 5 percent of juch residual pressure distribu-
tion and thus the numerical procedure converges rapidly with typi-
cal incremental change in the stress intenuity factor to be less
than 0.2 percent of the original stress intensity factor efter 2 to
5 iterations.

For a surface flaw where the elliptical circle penetrates the
free surface, this fitting problem becomes acute since the residu-
al pressure on the crack surface normally reaches a maximum value
in the vicinity of the free bounding surface. The physical crack
obviously does not continue beyond the bounding surface while the
elliptical crack, used in the alternating method, does protrude in-
to this free space. In order to represent the free bounding sur-
face, hartranft and Sih7 have suggested the use of onl even terms
of polynomial which reduces Eq. 4 to azz - A0 + A20 x + A02 y2 to
which the residual pressure distribution must be fitted. The re-
sult is an incomplete erasure of the residual pressure distribu-
tion resulting in slow convergence or possible divergence of the
iteration process in the alternating procedure.

In a recent paper, one of the authors 2 showed that the stress
intensity factor for a circular crack of radius b embedded in an



infinite solid and subjected to linearly varying pressure distribu-
tion of zz - po(1 - was approximately 5 percent higher than
that of a semi-circular surface crack subjected to the same pres-
sure distribution between 0 i y n b. This empirical finding Indi-
cated that the stress intenslty magnification factor due to the
free bounding surface had an effect similar to continuing the lin-
early varying pressure distribution in the-b< y < 0 region of the
fictitious portion of the semi-circular crack. This approximation
would obviously result in a significant error in estimation of the
stress intensity magnification factor if a similar procedure were
used to continue into the region of -b < y 0 , the nonlinear pres-
iure distribution acting on a saem±-circular crack.

The above empirical finding led to further numerical experi-
matation for arriving at an optimum pressure distribution on thecrack surface extended into the region of -b < y 0 of the ellip-

tical crack. Three pressure distributions of linear, quadratic,
and cubic with the maximum pressure at the free surface, as shown
in Fig. 4 were considered. For twc-dimensional problems the stress
intensity factors associated with an edge crack with linear, quad-
ratic, and cubic pressure distributions, shown in Figs. 4a, 4c, and
4e, can be computed by using the results of Stallybrass23 . In order
to obtain the same stress intensity factor at the crack tip of a
totally embedded through crack, various linear distributions of
pressures were prescribed on the other half of the embedded crack,
i.e., -b < y < 0. It was found that presure distributions shown
in Figs. 4b, 4d, and 4f yielded stress intensity factors which were
reasonably close to those fcL the edge crack . These pressure dis-
tributions ware then prescribed onto the other half of the elltpti-
cal crack, i.e., -b < y < 0, where half of the crack was loaded by
linear, quadratic, or cubic pressure distributions. Six terms in
Eq. 4 or ozz a A00 + AOly + A20x

2 + A02Y
2 + A21x y + A03y

3 were
then least square fitted to this prescribed pressure distribution
on the crack surface.

The above procedure of least square fitting was also applied
to the two-dimensional problem illustrated in Fig. 4. For this
purpose, a pressure of ozz - AO + AIy + A2y

2 + A3y
3 was fitted to

the 3 pressure distributions illustrated in Figs. 4b, 4d, and 4f.
Table I shows the fitted stress distributions, stress intensity
factors at the right crack tip, and the corresponding stress in-
tensity factors for edge cracks.

Stress intensity factors at the right crack t4.p were computed
by the procedure described in Ref. 24.
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ZA Differenices between the
bi b -b respective stress in-

tensity factors can

PO aobviously be reduced by
further numerical exper-

imentation with various

K O.4385 %476 K o.4385p 011 pressure distributions
prescribed in the region

(a) (b) of-b < y<O. Thepur-

pose of this study, how-
ZA zever, was to demonstrate

b b b that reasonable results

- 2 can be obtained for the
.I)p:1 three cases of prescribed

7 7ply, "?)linear, quadratic, and
o cubic pressure distribu-

Ptions with the same
K •.5959PVdb K •o.3446p-/W additional pressure in

(c) (d) the region of -b < y < 0

and thus no further
2M attempt was made to

bt improve the accuracy of
- 3 the resultant stress

~ Pe ).p)(u ) intensity factors.

K0O.6011 povpb K a 68Op05 PO

(0) (f)
FIGURE 4. STRESS INTENSTY FACTOR FOR AN EDGE

CRACK SUBJECTED TO VARIABLE PRESSURE
LOADING

TABLE I

Prescribed K (Right

Pressure Fitted Pressure crack tip) KI(Edge Crack)

Linearly a -0.9960-0.8714y 0.4636 poVrb 0.4385 poVA
Varying ZZ 0.4480y 2+0.3350y 3

Fig. 4b

Quadratically o.-i.0042-0.18 43y 0.5169 po A 0.595 p0 
"

Varying -0.4937y2-0.4094y0

Fig. 4d

Cubically Z =j0.9965+0.1508y 0.5808 po r 0.6071 po0 -
Varying -0.4480y 2-0.7276y'
Fig, 4f
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Figure 5 shows the normalized stress intensity factor of a
circular crack for the pressure distribution shown in Fig. 4b.
Poisson's ratio for this analysis was set to n - 0.3. The poly-
nomial pressure distribution fittod within 2% of the prescribed
bilinear pressure distribution. As shown in Fig. 5, the stress
intensity factor thus obtained differed as much as 9% from the
corresponding stress intensity factor for a semi-circular surface
crack with a prescribed linearly varying load. Part of this dif-
ference, i.e., approximately 2%, can be attributed to the differ-
ences in the Poisson's ratios used in the two analyses8 .

It is interesting to note that the residual normal surface
tractions, ayy, on the y - 0 plane for the problem illustrated in
the legend of Fig. 4 are nearly equal to the corresponding resid-
ual normal tractions for a circular crack subjected to uniform
pressure of po. It appears then that the additional residual tar.-
gential surface tractions, TyzIyWO in this problem act to counter-
act the crack opening moments of the residual normal surface trac-
tions thus causing the resultant stress intensity factor to
approach that of a semi-circular crack in a semi-infinite solid and
subjected to linearly varying pressure.

The close agreement between the stress intensity factors for
the two extremes of a semi-circular crack and a two-dimensional edge
crack suggested that this procedure of prescribing appropriate

%1.20-

-1.00R-t.0

0.70-

0.60- '

-~ 90480-70 -60-50-40-30-20 -10 0 I0 20 30 40 50 60 70 80 90

G:

ANUA POSITION 0, DEGREES

fIGURE 5. STEStTNIYFACT'ORN .g .A CIRCULAR~ CRACK SUBE4CT 0D TO A 0MBINEO TWO0 - -I-TiUIONSANA SEMI-CIRCULA U030



12

pressure distribution in the region of -b < y 0 of an elliptical
crack can be used to estimate the stress intensity factors for
semi-elliptical surface flaws subjected to linearly varying pres-
sure distribution. The estimated stresu intensity magnification
factors thus obtained along the periphery of a semi-elliptical
crack subjected to linearly varying pressure distribution are
shown in Fig. 6. The stress intensity factor in the vicinity of
0 a 0, i.e., where the semi-elliptical crack meets the free bound-
ing surface, is not shown since the stress singularity at this
point is believed to vanish following the analysis by Hartranftand Sih 7. The error bounds of this estimation are indicated in
Fig. 6 by the two known stress intensity factors for b/a 0 and

S0,90 o2-_
018. POISSON'S RATIO 10 3 .... y

00 60
, F0980
8 0.80

04

+ f

S 0.70 1. o0 IO 20y 0 5 O 7 09 q 2

P0

-1
0.40

g0

040
0.60

a LJ 0.80
0.98

0.30 ... .0 for
0 10 20 30 40 50 60 70 80 90, %O.25

CIRCULAR ANGLE 8, DEGREES
FIGURE 6, ESTIMATED STRESS INTENSITY FACTOR OF A SEMI- ELLIPTICAL

FLAW IN A HAI-F SPACE SUBJECTED TO LINEARLY VARYING LOAD.
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1.0. The overestimation in the stress intensity magnification fac-
tors at the deepest penetratiot. of the ellipse or 0 - 900 is con-
sistent with the corresponding two-dimensional problem shown in
Table I. For a better estimate of the stress intensity magnifica-
tion factor at this position, all values could be lowered 72 fol-
lowing the results in Table 1.

The same procedure was used to estimate the stress intensity
magnification factors for semi-elliptical cracks subjected to
quadratic and cubic distributions of pressure. Again, the fitted
polynomial distribution of pressure fitted within 2 percent of the
prescribed pressure. Unlike the previous case of linearly varying
pressure distribution, the stress intensity factors for quadratic
and cubic pressure distribution on a semi-circular surface flaw
are not known. The obtained stress intensity factors, however,
were consistent with known theoretical solutions at one extreme of
b/a - 0, i.e., for an edge crack.

DISCUSSION

The stress intensity factor of a semi-elliptical crack in a
semi-infinite solid subjected to uniaxial tension can be estimated
from the results of Fig. 5. Figure 7 shows the pressure distribu-
tion for erasing-the residual, normal stresses-on-the-free surface
at yuO of a semi-infinite solid after the first iteration in the
alternating method. An equivalent linearly varying pressure dis-
tributinn as shown in Fig. 7, which is nearly in equilibrium with
the rapidly varying pressure distribution is now considered. The
stress intensity factor for a semi-elliptical crack subjected to
the equivalent linearly varying pressure distribution is then esti-

mated from Fig. 6. The superposition of this stress intensity
factor to the original stress intensity factor of an elliptical
crack in an infinite solid and subjected to uniform pressure then
yields an estimate of the front surface magnification factor for a
semi-elliptical crack in a semi-infinite solid as shown in Fig. 8.
It should also be noted that, as evident from the equivalent pres-
sure distributions in Fig. 7, this procedure will yield underesti-
mated stress intensity magnification factors close to the free sur-
face. Nevertheless, for a semi-circular crack, the estimated val-
ue of MF - 1.13 at an angular orientation of 0 - 20* is suffici-
ently close So the original results of MF - 1.12 obtained by
Smith et al.

The estimated front surface stress intensity magnificatioa
factors together with those by Smith and Alavi5 , Kobayashi and
Moss 25 , and Nisitani and Murakami' 0 are shown in Fig. 9. The lat-
ter results by Nisitani and Murakami, which were computed for
Poisson's ratio of n w 0, were corrected for n w 0.25, as shown in
Fig. 9 following an investigation on the effects of Poisson's



14

ratio by 4qIh .ai
b/ --.--- Kobayashi-'. Also

shown in Fig. 9 is
0.7 bb0o.o95 ..- the single result by

S-.. . Hartranft and Sih

*'.-lALONGy-AXIS " for n - 0.307.
Ole -OUIVALENT O7lAL0NO Y.AXIS Although the new

.... EOUALN Nz-AXIS estimates of the
o ... ALONG Z-AXIS front surface magni-
"N 0." fication factor

br appear to be in
W b/O.95 j closer agreement with

0.4 20 - the results by
Smith and Alavi5 ,

C. when an adjustment
-0 0.3- is made to accounto L, 0,3for the possible

b overestimation dis-

0.2- cussed previously,
the adjusted front

./O-0'9 " b/" -0.6 surface stress in-

0.1 tensity magnifica-
0.1- tion factor will move

closer to ;.-he analyt-

. ically more rigorous. results by Nisitani

and Murakami.

"0 0.2 o.4 0.6 0.8 1.0 The above men-

DISTANCE OR tioned approximatef procedure does not
FIGURE 7. PRESCRIBED PRESSURE OISTRIBUTION ON A SEMI-

ELLIPTICAL CRACK SURFACE AFTER FIRST ITERATION eliminate the diffi-
IN THE ALTERNATING METHOD, POISSON RATIO v,0.3 culties in fitting a

polynomial pressure

distribution. Much of these difficulties, however, can be reduced
by a shrewd use of the limited terms in the polynomial using nu-
merical procedures akin to over-and-under relaxations.

The alternating procedure with optimum rectangle spacing on

the free bounding surface and the pressure distribution in the
region of -b < y < 0 of the elliptical crack are being used to

solve practical problems involving semi-elliptical surface flaws.

Hopefully, these results will be available for presentation at the

Conference of Prospects of Fracture Mechanics.
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